Deep Learning Optimisation for Sports Cardiology:
Neural Architecture Search-Driven Arrhythmia Classification

Erik Vanegas Miiller!:?, Arese Joe-Oshodi?, Liang He!'?, Abhirup Banerjee?*, Mauricio Villarroel'»?

'The Podium Institute for Sports Medicine and Technology, University of Oxford, United Kingdom
?Institute of Biomedical Engineering, University of Oxford, United Kingdom
3Division of Cardiovascular Medicine, University of Oxford, United Kingdom

Abstract

Athletes develop cardiac adaptations from training,
but distinguishing between physiological and pathological
changes remains a challenging clinical problem. We
leverage Neural Architecture Search (NAS) to explore
deep learning architecture optimisation for cardiac rhythm
classification in professional football athletes. We
developed a baseline and three pathophysiology-aware
(rate, depolarisation, repolarisation) neural networks on
a dataset from the general population and tested them
on a sports dataset. Rate-based arrhythmias needed
larger temporal windows (kernel size = 21) for extended
pattern capture, whilst depolarisation abnormalities
required small kernels (kernel size = 3) for high-
frequency morphological features with maximum attention
heads (number of heads = 16) for parallel feature
analysis. Repolarisation disorders showed intermediate
complexity (kernel size = 9). All categories required high
regularisation (dropout rates between 0.5-0.7). While
the baseline model achieved the highest overall averaged
area under the receiver operating characteristic curve
of 0.62, individual rhythm-specific performance suggests
that specialisation benefits are present. Pathophysiology-
informed NAS designs represent a step toward domain-
informed arrhythmia detection in sports cardiology.

1. Introduction

Most arrhythmias during sports activities are due to
undetected structural cardiac defects or channelopathies
in which high-intensity exercise can trigger abnormal
cardiac rhythms [1]. These cardiac defects resemble
physiological and anatomical adaptations associated with
sports [2]. Sinus Bradycardia (SB), Incomplete Right
Bundle Branch Block (IRBBB), and T-wave Inversion
(TWI) are common cardiac adaptations in football athletes
[3]. Up to one in every 300 athletes may have an
arrhythmic substrate that predisposes them to sudden
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cardiac arrest [4]. Distinguishing between physiological
and pathological cardiac adaptations in athletes is a
challenging clinical problem.

Neural Architecture Search (NAS) is an emerging
Artificial Intelligence (AI) research direction that
automatically designs optimal neural network (NN)
architectures for specific tasks, including arrhythmia
classification. N. Fayyazifar [5] used NAS to optimise
a convolutional NN structure for the detection of Atrial
Fibrillation (AF) from single-lead -electrocardiogram
(ECG) data using the Efficient Neural Architecture Search
algorithm. Liu et al. [6] explored optimal attention
architecture through NAS to improve pattern learning
of temporal and lead-associated information. Asadi et al.
[7] utilised NAS to automatically design a convolutional
NN for the classification of paroxysmal AF using the
Differentiable ArchiTecture Search (DARTYS).

We leverage NAS to explore pathophysiology-aware
NN architecture optimisation in professional football
athletes. We design a custom-made search space that
focuses on the initial kernel size (physical interpretability),
dropout rate (regularisation), and the number of attention
heads (simultaneous feature analysis). We split
a heterogeneous dataset into pathophysiology-specific
datasets to develop our proposed NAS. Our goal is to
determine the extent to which pathophysiology-aware
training improves the classification of sports-related
cardiac arrhythmias.

2. Methods

2.1. Datasets

We use two datasets for developing the NAS-driven
arrhythmia classification: the PhysioNet Challenge 21 [8]
dataset for training and validation, and the Pro-Football 12-
lead Resting Electrocardiogram Database (PF12RED) [9]
for testing.

We first split the PhysioNet Challenge 21 dataset
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(n = 88,253) into a baseline dataset (all ECGs),
and three pathophysiology datasets: one with rate-
based cardiac rhythms (i.e., timing and regularity
abnormalities), one with ventricular depolarisation
abnormalities (i.e., QRS-related abnormalities), and one
with ventricular repolarisation pathologies (i.e., ST-T
related abnormalities).

The Rate NAS dataset (approximately 35.9 % of the
PhysioNet Challenge 21 dataset) consists of Bradycardia,
Sinus Arrhythmia, SB, and Sinus Tachycardia. The
dataset for ventricular depolarisation (27.1 %) contains
Bundle Branch Block (BBB), Complete Left BBB,
Complete Right BBB, 1st Degree AV Block, IRBBB,
Left Anterior Fascicular Block, Left Axis Deviation, Left
BBB, Low QRS Voltage, Non-specific Intraventricular
Conduction Block, Poor R Wave Progression, Prolonged
PR Interval, Q Wave Abnormal, Right Axis Deviation, and
Right BBB. Finally, the ventricular repolarisation dataset
(15.8 %) comprises T-wave abnormalities and TWI. Nine
arrhythmias do not fit into the three pathological awareness
categories, including supraventricular (AF, Atrial
Flutter, Premature Atrial Contraction, Supraventricular
Premature Beats) and ventricular (Premature Ventricular
Contractions, Ventricular Premature Beats) arrhythmias,
pacing rhythms, mixed pathophysiology (Long QT), and
Normal Sinus Rhythm (NSR).

The PF12RED is an open-source dataset from Spanish
professional football players containing 161 resting ECGs
with the cardiac rhythms of SB, IRBBB, and TWI, in
addition to NSR. In relation to NSR, SB is a rate problem,
while IRBBB and TWI are ventricular depolarisation and
repolarisation abnormalities, respectively.

2.2. Neural Network Architecture

We propose a NAS-driven arrhythmia classification
based on rate and ventricular depolarisation and
repolarisation. Our NN is based on a residual NN with
a multi-head attention mechanism, as described in [10].
The input goes through a convolution head with a kernel
size of 1x15, while using a stride of 2. The embedding
dimension has an output of 256 channels and undergo a
batch normalisation, followed by a leaky Rectified Linear
Unit activation. The output values then become input
values for the subsequent five residual blocks, containing
only nine convolution layers while using a stride of 2.

A dropout layer drops half of the neurons to prevent
overfitting. Then, the dropout layer’s output is
connected through the multi-head mechanism, with 8
heads on the 256-channel data, each head focusing on
32 dimensions. The multi-head’s attention mechanism
results are converted into a 256-dimensional vector. An
adaptive max pooling layer reduces the dimensionality by
downsampling each of the 256 feature maps to a single

maximum value.

The NAS search space consists of a custom-made
search space that combines convolutional operations and
self-attention blocks. The initial kernel size controls
the temporal receptive field by acting like a rectangular
window function on the ECG signal, with smaller kernels
capturing high-frequency features (i.e., IRBBB) and larger
kernels longer temporal patterns (e.g., R-R interval for SB
detection).

The dropout rate controls the regularisation strength by
preventing overfitting. Low dropout rates are an advantage
when the ECG has clear, consistent patterns, such as SB
or NSR. High dropout rates are necessary for complex,
morphological patterns, such as IRBBB.

The attention heads determine how many different ECG
features can be analysed simultaneously. Fewer heads are
good when a single pattern is dominant (e.g., consistent
heart rate), while a larger number of heads improves multi-
feature attention (e.g., QRS and T-wave analysis). The
embedding dimension (256 channels) needs to be divisible
by the number of heads so that each head can process an
equal number of channels simultaneously.

We then conduct one NAS experiment with each
dataset (baseline, rate, ventricular depolarisation and
repolarisation), optimising the initial kernel size, dropout
rate, and number of attention heads for each dataset.
We subsequently retrain each of the four NN with the
optimised parameters and test those on the PF12RED
dataset.

2.3.  Neural Architecture Search

A NAS design is composed of three major components:
a search space, a search strategy and a performance
estimation metric. The search space contains all possible
network architectures. Our custom-made search space
optimises the initial kernel size (possible options: 3, 9, 15,
21), number of attention heads (2, 4, 8, 16), and dropout
rate (0.1, 0.3, 0.5, 0.7). A search strategy is then employed
to identify the best-performing architectures within the
chosen search space. We apply DARTS, a gradient-
based approach, which transforms the discrete decision
search space into a continuous, differentiable search space
[11]. We choose DARTS because it is an established
search strategy and a computational compromise between
a RandomOneShot strategy (random selection from a
supernet) and RegularisedEvolution, where all possible
combinations are trained. Binary Cross-Entropy is used
as the performance estimation metric.

With the three sets of determined parameters (initial
kernel size, dropout rate, and attention heads), we train and
validate four NN models (baseline, rate, depolarisation,
and repolarisation). We then test the four NNs on the
PF12RED arrhythmia dataset. NNs were trained for
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50 epochs using a learning rate of 1 x 1073. The
performance metrics we use are the area under the receiver
operating characteristic curve (AUROC), the area under
the precision-recall curve (AUPRC), and the F1-score.

3. Results

The initial kernel size is smallest for the baseline and
ventricular depolarisation (n = 3), followed by ventricular
repolarisation (n = 9) and rate-based arrhythmias
(n = 21) NAS. The NAS results for the number of
attention heads are 2 for all experiments but ventricular
depolarisation (n = 16). The dropout rate is 0.5 for
ventricular repolarisation and 0.7 for the rest.

All four experiments score an average AUROC score of
over 0.5 as shown in table 1, with the baseline NN scoring
the highest (0.62) and rate-based the lowest (0.55). For
single experiments, the AUROC value is below 0.5 for
TWTI in the rate and ventricular repolarisation, and for SB
in the ventricular depolarisation. The highest value is 0.76
for NSR in the ventricular depolarisation.

The averaged AUPRC in table 1 results were highest
for ventricular depolarisation (0.64) and lowest for the
rate-based experiment (0.57). Single AUPRC results
were highest for TWI (between 0.98-0.99) and lowest for
IRBBB (between 0.17-0.26).

The ventricular repolarisation experiment (see table 2)
scores the highest (0.67) and ventricular depolarisation the
lowest (0.54) averaged Fl-score. We observe the lowest
single score during the rate experiment for SB (0.10), and
the highest during all experiments for TWI (0.99).

4. Discussion

The baseline and ventricular depolarisation NAS
parameters result in the smallest available initial kernel
size of 3. This parameter indicates that the NN needs
to capture high-frequency features and short temporal
patterns. We hypothesise that the low initial kernel
size is due to the nature of the datasets: the baseline
dataset contains over 30 different types of arrhythmias,
while ventricular arrhythmias, such as IRBBB, are
morphologically complex. For cardiac rthythms with more
long-term dependencies, such as SB, the rate NAS search
outputs the largest available kernel size of 21. The NAS for
ventricular repolarisation results in 9, indicating a balanced
complexity between depolarisation and rate-based cardiac
rhythms.

All experiments output a dropout rate of 0.5 (ventricular
repolarisation) or higher. The baseline, rate, and
ventricular depolarisation all yield 0.7, suggesting strong
regularisation to prevent overfitting due to the complexity
of the signal.

For the baseline, rate, and ventricular repolarisation,
the NAS determines that 2 is the optimal number of
attention heads. The low number of attention heads is
consistent when single patterns are dominant, such as SB
(rate) or TWI (ventricular repolarisation). Although a
higher attention head number could be expected for the
baseline due to the arrhythmia heterogeneity, more than
half (including NSR) of all rhythms are rate-dominant
rather than morphology-dominant. The ventricular
depolarisation NAS has the highest possible number of
attention heads with 16, highlighting the morphological
complexity behind rhythms like IRBBB.

The performance results demonstrate mixed evidence
for the effectiveness of pathophysiology-informed NAS.
Whilst the baseline achieves the highest overall AUROC
of 0.62, individual rhythm-specific performance suggests
some specialisation benefits. =~ The rate-aware model,
optimised with the largest kernel size (21) for temporal
dependencies, shows reasonable NSR detection but
performed poorly on SB classification (Fl-score 0.10),
implying that larger temporal windows may not adequately
capture bradycardic patterns. The depolarisation-aware
model, configured with maximum attention heads (16)
and small kernels (3) for morphological complexity,
achieves superior NSR performance (AUROC 0.76,
AUPRC 0.83), supporting the hypothesis that increased
attention mechanisms benefit complex rhythm detection.
However, IRBBB classification proves challenging
across all models (Fl-scores 0.25-0.32), indicating
that this morphologically complex arrhythmia requires
further architectural refinement. = TWI demonstrates
optimal detection scores (0.98-0.99 AUPRC) across
all experiments, although this likely reflected the high
prevalence of TWI in the PF12RED test dataset (98.1 %)
of ECGs rather than the actual model’s performance.

A limitation is the multi-label nature of ECGs, i.e.,
having multiple arrhythmias diagnosed on one ECG.
Other arrhythmias, apart from the targeted influence,
affect the NAS training. For example, an ECG
from the ventricular repolarisation pathophysiology-
aware datasets had the diagnosis of TWI together with
SB. We cannot conclude that ventricular repolarisation
abnormalities solely influenced the parameter selection
during ventricular repolarisation-aware NAS.

5. Conclusion

The NAS  algorithm  successfully  identifies
physiologically informed parameters that reflect the
underlying pathophysiology of different cardiac rhythms.
However, this specialisation does not translate into
consistent performance improvements across all
arrhythmia types during testing. Despite mixed
performance results, these physiologically informed
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Table 1: Area under the receiver operating characteristic curve (AUROC) and area under the precision recall curve
(AUPRC) results for Baseline (BL), Rate (RT), and ventricular Depolarisation (VD) and Repolarisation (VR) experiments
regarding Normal Sinus Rhythm (NSR), Sinus Bradycardia (SB), Incomplete Right Bundle Branch Block (IRBBB), and

T-wave Inversion (TWI).

NSR SB IRBBB TWI Average
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC
BL 0.71 0.72 0.67 0.54 0.59 0.17 0.5 0.98 0.62 0.60
RT 0.55 0.64 0.55 0.42 0.63 0.23 0.46 0.98 0.55 0.57
VD 0.76 0.83 0.47 0.48 0.51 0.26 0.63 0.99 0.59 0.64
VR 0.74 0.81 0.60 0.45 0.63 0.19 0.44 0.98 0.6 0.61

Table 2: Fl-score results for Baseline (BL), Rate (RT),
and ventricular Depolarisation (VD) and Repolarisation
(VR) experiments regarding Normal Sinus Rhythm (NSR),
Sinus Bradycardia (SB), Incomplete Right Bundle Branch
Block (IRBBB), and T-wave Inversion (TWI).

evaluation, treatment, and return to play. Heart Rhythm
May 2024;ISSN 1547-5271.

[5] Fayyazifar N. An accurate cnn architecture for atrial
fibrillation detection using neural architecture search.
In 2020 28th European Signal Processing Conference
(EUSIPCO). IEEE, January 2021; .

[6] Liu Z, Wang H, Gao Y, Shi S. Automatic attention

NSR SB IRBBB TWI Average
BL 0.77 0.54 0.28 0.99 0.65
RT 0.77 0.55 0.32 0.99 0.66
VD 0.83 0.10 0.25 0.99 0.54
VR 0.80 0.56 0.34 0.99 0.67

(7]

learning using neural architecture search for detection of
cardiac abnormality in 12-lead ecg. IEEE Transactions
on Instrumentation and Measurement 2021;70:1-12. ISSN
1557-9662.

Asadi M, Poursalim F, Loni M, Daneshtalab M, Sjodin M,

parameters show promise for optimising diagnostic
performance in specific cardiac rhythm classifications,
representing a meaningful step toward domain-informed
arrhythmia detection in sports cardiology. Future work
could explore single-label datasets to isolate influences of
different pathophysiologies and extend the framework to
broader sports-related cardiac abnormalities.
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